Numpy has built-in functions for creating arrays.
zeros(shape) will create an array filled with "0" values with the specified shape. The default dtype is float64.
Example:
>>> np.zeros((2, 3))
array([[ 0., 0., 0.],
[ 0., 0., 0.]])
zeros(shape) will create an array filled with "0" values with the specified shape. The default dtype is float64.
Example:
>>> np.zeros((2, 3))
array([[ 0., 0., 0.],
[ 0., 0., 0.]])
ones(shape) will create an array filled with 1 values.
Example:
>>> np.ones((2,3))
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
arange() will create arrays with regular increment values
Example:
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([ 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.1)
array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])
linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning and end values.
Example:
>>> np.linspace(1., 4., 6)
array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ])
indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each representing variation in that dimension.
Example:
>>> np.indices((3,3))
array([[[0, 0, 0],
[1, 1, 1],
[2, 2, 2]],
[[0, 1, 2],
[0, 1, 2],
[0, 1, 2]]])